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BEARING-ONLY TRACKING ALGORITHMS

INTRODUCTION

A number of studies in locating electronic emitters have been conducted, and
algorithms (given in papers such as Refs. 1, 2, and 3) have been developed which provide
estimates of emitter locations based on bearing measurements. For the most part, these
algorithms are concerned with the problem of locating stationary emitters, or relatively slow
moving emitters, based on measurements made by a single moving platform. We will modify
two of these algorithms such that a moving emitter's location can be estimated by using
bearing measurements from two stationary sites. This was accomplished by thinking of the
stationary sites as a single platform which was moving rapidly back and forth between the
sites. A third algorithm, the modified Kalman filter technique, was also developed. This
technique also uses bearing measurements from two sites to estimate the emitter's location
but is not dependent on the technology developed for locating emitters from a single
moving platform. All methods involve some form of triangulation.

The performances of the three algorithms were compared by operating them in
identical scenarios using a computer simulation. Emitter motion was restricted to constant-
velocity straight-line motion. Random errors were introduced to the measurements by
selecting samples from a normal noise distribution derived from a random-number generator.
A standard deviation of 1° was assumed for the angular-bearing noise distribution. Bearing
measurements were made every 2 s from alternate sites.

STATISTICAL MOVING AVERAGE TECHNIQUE

The first technique to be considered was developed from an algorithm presented in
Ref. 1. In its original form the algorithm was used by a moving platform to estimate the
position of a stationary emitter. It was also demonstrated that the algorithm could be used
to detect emitter motion. However, no attempt was made by the authors of Ref. 1 to use
the algorithm in a tracking mode, since it provided erratic location estimates when the
speed of the emitter was of the same order as that of the platform.

If one considers the case of two sites that are sharing bearing information on a single
emitter, one can think of the sites as a single platform which is moving rapidly back and
forth between the sites. This leads to the following adaptations of the algorithm. In Fig. 1
we have two detecting sites at (xl, y1 ) and (x2, Y2). Without loss of generality the sites
have been located on the x axis. An emitter is at (x, y), and the current best estimate of its
position is (x, y). The angle H corresponds to the heading in the single moving platform
case [ 1 ] and is measured clockwise from north. The bearing angle Bi is measured clockwise
from the baseline, and the angle (H + Bi) is measured clockwise from north. The true,
measured, and estimated bearings are given by Bi, Bi, and Bi respectively, with the sub-
script i being incremented each time a site makes a measurement. The error in the bearing
measurement is denoted by AB1, that is, Bi = Bi + ABj, and ABi is assumed to be normally
distributed with zero mean. The difference between the estimated position of the emitter
(x, y) and the true position (x, y) is denoted by (Ax, Ay):

Manuscript submitted April 13, 1980.
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Fig. 1 -Geometry and nomenclature for the statistical
moving average technique

Ax = x- x, (1)

and

Ay =5'- y. (2)

To further simplify the procedure, the following notation is adopted:

Mi = Y - y, /i = Y - Yj, (3)

ni = x - Xi, ni = x - Xi (4)

where j is the site number of the site making the ith measurement. From Fig. 1

cos (H + B,) M2 (5)

and

cos (H + B,) = mi (6)

Solving (5) and (6) for Bi and Bi yields

Bi = -H + cosi (mi/ m i) (7)
and

Bi = -H + cos 1 m7 + ni ). (8)

2
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Making the substitutions

x = x - Ax,

y = Y - Ay

in (7) gives

B - AB. = -H + cos-1

[

mi - Ay

A y)2 + (Ii- AX)2

The quantity (B - ABE) can be considered as a function Fj (Ax, Ay)
expanded in a Taylor's series about the point (0, 0), giving

that can be

Fi(Axj, Ay) = Fl(0, 0) + aFilaAx y
lAx =Ay= O

Axi + aFi/aAy A
lAx = Ay = 0

Ayi + 'ki, (11)

where Oi represents higher order terms in the series. For Ax - Ay = 0

Fi(°, O) = -H + cos-1( > = Bi.

Making this substitution in (11) gives

B - ABi = Bli + 6Fl aAX |
lAx =Ay =O0

Axi + aFM/aAy y

lAx =Ay =O0

Ay + 0i. (13)

Taking the partials and rearranging (13) yields

B - Bi = [-Mi(sgn ni)/(Mr + ni)]Ax + [LIjI (m +V)]AY- + Oi + ABi

Assuming that Oi << AB , one can extend the assumption on ABi to conclude that
Ei = (O5i + AB1) is normally distributed with zero mean.

The substitutions

Yi = Bi - BjfY.B.B xil = - il(m2 ?+ n2),

gives a set of N equations for N measurements:

Yl = XllAx + X 12 Ay + El,

Y2 = X2 1Ax + X2 2 AY + E2,

YN= XNlAX + XN2 AY + EN.

3
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In matrix notation Eqs. (16) can be reduced to

Y = Xf3 + E, (17)

where

Y, X 11 X 1 2 El

Y2 ~X21 X22 E2 Fx
Y - X ~~~E ,and (=I I

Y=... , X=... ... , E=...,an =_ZY

YN XN1 XN2 EN

In Eq. (17) j and E are unknown; however, the assumption that E is normally distributed
allows an estimate of 3. The standard least-square estimate [4] of ( is

f = (XTX)lXTY. (18)

Starting with an initial estimate (x, y) of the emitter's position and a (Ax, Ay) as
determined by Eq. (18), one can get a new estimate of the emitter's position (x, y):

x^ = x - Ax, y = y - y. (19)

This allows one to recalculate X and Y from

Y Bi -Bi, mi = y - y 1 , and ni = x - xl. (20)

This process can be repeated until some measure of convergence is satisfied. Random errors
in the measurements generally cause the process to converge on a point which is not the true
emitter position but is on the average the best estimate achievable with the assumptions made.

Up to this point, emitter motion has not been considered; however, the technique can
be expanded to consider moving emitters by hypothesizing an "average" position of the
emitter during the time interval in which N measurements are taken. This is the approach
which has been applied to moving emitters. In essence a statistical moving average of the
emitter's position is determined. Initially a rough estimate is made for the (N + 1)/2 position
based on N measurements made from two remote sites, and this is used in the algorithm as
outlined for the stationary emitter. After the algorithm has converged to a "better"
estimate, a new measurement is taken, and the oldest of the previous N measurements is
discarded. The process is then repeated, and the time series of "better" estimates is used to
constitute a track.

A computer model of the process has been developed, and some preliminary results
are available. Figure 2 shows the range and crossrange tracking, errors for an emitter ap-
proaching site 2 at a speed of 500 units/s. The sites are separated by 20K units, and
measurements are made at alternate sites every 2 s. The results shown in Fig. 2 were
generated with N = 7 and four iterations. Improved tracking performance was obtained by
setting N = 15. This result is shown in Fig. 3; however, the price paid to achieve this per-
formance is an increase in the time required for track initiation.

4
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Fig. 3-Range and crossrange error for N = 15 measurements when the
statistical moving average technique is used
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Suggested in Ref. 1 is that the relative speed of the target with respect to the observer
might also affect the performance. When two sites are located as described and alternate
readings are made every 2 s, an effective observer speed of ±10K units/s is achieved. To
investigate the effect of emitter speed on tracking performance, a scenario was designed
with an emitter moving parallel to the baseline. The spacing between the emitter path and
the baseline was set at 30K units.

Figures 4 and 5 plot the errors in the x and y coordinates of the emitter's position for
emitter speeds of 250 and 1000 units/s respectively. Contrary to the results shown in
Ref. 1, tracking performance does not change appreciably for the two speeds considered.
This is because with two observers the triangulation effect is not significantly diminished by
the motion of the emitter if the distance the emitter moves between measurements is small
with respect to the length of the baseline. (For 1000 units/s and a baseline of 20K units
the emitter moves 1/10 the length of the baseline every 2 s.) The track for the fast emitter
settles down sooner than that of the slow emitter. This is because the fast emitter moves
over a greater distance in the measurement interval; consequently some of the measurements
of the fast emitter are made at more accurate locations than all of the measurements of the
slow emitter.

MODIFIED KALMAN FILTER TECHNIQUE

The second technique to be considered is referred to as the modified Kalman filter
technique. Under this technique one of the sites is designated as the reporting site and the
other as the updating site. As shown in Fig. 6, the measurements y(k + 1) from the report-
ing site are averaged to produce S2 (k). (Since the measurements are equally spaced in time,
92 (k) is coincident with (3l(k). If the measurements were not equally spaced, a linear

30,000 -

v 20,000

SITE 1 SITE 21

\d10K 10K a 

Ay -30,000 x

Fig. 4-Positional error in the x and y coordinates for a crossing emitter with V= 250 units/s
when the statistical moving average technique is used
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Fig. 5-Positional error in the x and y coordinates for a crossing emitter with V = 1000 units/s
when the statistical moving average technique is used

Fig. 6-Geometry for the modified Kalman filter

interpolation procedure could be employed to make f2 (k) coincident with f31 (k).) (2 (k)
and (1 (k) are then used to triangulate the position of the emitter, and the coordinates of
the emitter are fed into a Kalman filter, which is a tracking algorithm that minimizes the
least-square error [5]. The coordinates of the emitter corresponding to the kth measure-
ment by the updating site are given by

x(k) = c(k)sin(31(k) + x1, ,Y(k) = c(k)cos3 1(k) + Yi,

where

c(k) = dcos0 2(k)/[sin(g 1 (k) - (2 (k))].

The state equation for the Kalman filter is

X(k + 1) = 4I(k)X(k) + F(k)A(k),

(21)

(22)

7
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where

x(k) 1 T 0 0 20 

x(k) 0 1 0 0 .T 0 -ax(k)-1
X(k) = , 4d (k) = , r(k) = , and A(k) = I ,

y(k) 0 0 1 T 0 12 ay(k)

y(k) 0 0 10 0 T

with X(k) being the state vector at time sample k consisting of position and velocity compo-
nents x(k), x(k), y(k), and '(k), k + 1 being the next update time, T being the time between
updates, and ax(k) and ay(k) being random accelerations whose covariance matrix is Q(k).
The observation equation is

Y(k) = M(k)X(k) + V(k),

where

x(k) 1 0 Lvx (k)
Y(k)=L , M(k) = , and V(k)=

y(k) 0 0 1 0 u,(k)

with Y(k) being the measurement at time sample k consisting of measured positions x(k)
andY 3(k) and with V(k) being zero mean noise whose covariance matrix is R (k).

Any two successive measurements are not strictly independent, due to the overlap of
measurements from the reporting site in the triangulation process. Furthermore a bias can
be introduced by using an arithmetic average in determining (2 (k); however, these incon-
sistencies do not seem to affect the tracking performance of the algorithm, and these
deficiencies can be removed if deemed necessary.

The recursive algorithm which constitutes the filter is described in Ref. 5. The elements
of the covariance matrix

ax2(k) axy (k)
R(k) = (23)

axy (k ) a 2 (k )

as derived from Eqs. (21) are (as shown in the Appendix)

a2 = [d/sin2 (gk 1-32)]2 [sin2p1(cos20 1)u 2 + sin2 i2 (Cos2P2 )a2], (24)

a2 = [d/sin2 (13- ]2 [(cos401)U2 + (cos4 02)g], (25)

and

= [d/sin2 ( 1 - 2 ]2[cos3g, (sin i)a 2 + cos3 32(sin 02 )ac21], (26)

where the kth-sample notation is not shown.

8
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The performance of this algorithm was examined using the same scenarios used in the
previous examples. Figure 7 shows the range and crossrange error for an emitter ap-
proaching site 2, and Figs. 8 and 9 give the errors in the emitter's x and y coordinates for
an emitter flying parallel to the baseline at speeds of 250 and 1000 units/s. For both the
radial and crossing emitters the modified Kalman filter gives a significantly better track than
that developed by the moving average technique.

EXTENDED KALMAN FILTER TECHNIQUE

The third technique to be considered is described in Refs. 2 and 3. In these studies
primary consideration was given to the special case in which all the bearing measurements
were made by a single moving platform. As described subsequently, the technique has been
applied to the multisite case with two or more sites making asynchronous observations of a
moving emitter.

- 10,1
I-
z

z

0

wU -10,1

CROSS-
RANGE
ERROR

ni n\ *1 I
RANGE FROM SITE 2

EMMITTER's PATH
V = 500 UNITS/s

10K

SITE 1>

10K

SITE 2

Fig. 7 - Range and crossrange error when the modified Kalman filter is used

z 10,0000
i-
0~a-

x COORDINATE

I2

Fig. 8- Positional error in the x and y coordinates for a crossing emitter with
V = 250 units/s when the modified Kalman filter is used
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00 k6:6U_--4&,W0 -20,000 0 a 40,00 400 100,000
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-10,000 _

-20,000

Fig. 9-Positional error in the x and y coordinates for a crossing emitter with
V = 1000 units/s when the modified Kalman filter is used

The geometry of the situation is shown in Fig. 10. For observation k the bearing
measurement 3(k) assuming no noise is given by

tan 1(k) = IXT(k) - xi]J[yT(k) - ] , (27)

where the target location is given by the coordinates XT(k) and YT(k) and the ith site loca-
tion is given by the coordinates xi and yi. Equivalently (27) can be written as

[xT(k) - xi] cos ,6(k) - [YT(k) - yi] sin 0(k) = 0. (28)

Further manipulation yields

Xi cos 1(k) - yi sin 13(k) = xT(k) cos 13(k) - yT(k) sin 0(k). (29)

If the left-hand side of (29) is considered as a measurement, it can be rewritten as

xi cos 0(k) - y sin 0(k) = xT(k)cos g(k) - yT(k)sin 0(k) + N, (30)

where P(k) is the kth bearing measurement corrupted by noise and N represents the noise in
the measurement process. Equation (30) can be rewritten in the form of an observation
equation for the Kalman filter:

Z(k) = M(k)XT(k) + N(k), (31)
where

Z(k) = xicos1,(k) - yisin 1(k),

-XT K
XT(k) = 'T,

XT

10
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Fig. 10-Geometry for the extended Kalman filter

and

M(k) = [cos 0(k), -sin 13(k), 0, 0].

The corresponding state equation, which was described in Ref. 5, together with the observa-
tion equation are in a form resembling that of a linear estimation problem. Despite the non-
linearities in the observation equation an attempt was made to apply linear estimation
techniques. Before this was done, two approximations were made: the matrix M(k) was
replaced by

M(k) = [cos f(k), -sin 1(k), 0, 0J, (32)

and the variance of N(k), denoted by 2N(k), was approximated by (as derived in the
Appendix)

2 (k) X 2a2 + 2yi) sin2 1 + ( 2 +y 2)cos2 X

-2 sin 1 (cos f3)xjyjap2, (33)

wee2 2 an 2i
where ox, and ay, are the error variances in the location of the observation sites and a$ is
the variance in the bearing measurement.

The measurement Z(k) is essentially the perpendicular distance from the origin to the
bearing line (Fig. 10), and this distance depends on the location of the sites with respect to
the origin. Because of this feature it was advantageous to locate both receiving sites on one
of the coordinate axis. For sites on the x axis yi = 0, and the variance (33) is reduced to

9N(k) = (Xi22 + a>) sin2' + oX cos2: . (34)

With these assumptions the algorithm described in Ref. 2 was exercised, with results
as follows.

11
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The same scenarios which were described in the two previous sections were used to
examine the performance of the algorithm. Figure 11 shows the range and crossrange errors
for an emitter approaching site 2 at a speed of 500 units/s. It was assumed for all of the
scenarios that the locations of both sites were known almost exactly; that is, or = or = 10
units, and a value a03 = 10 was used in computing the errors. Figures 12 and 13 show the
errors in the emitter's x and y coordinates for an emitter flying parallel to the baseline at
speed of 250 and 1000 units/s respectively. In general the extended Kalman filter takes
longer to settle down than the modified Kalman filter; however, the track for the slow
emitter, moving parallel to the baseline, is more accurate once it is fully developed.

20,000

I-

z0
LU
CDz

0
LU

RANGE FROM SITE 2

i 10K

SITE 1

EMITTER's PATH
V = 500 UNITS/s ERROR

10K I

\-SITE 2

Fig. 11-Range and crossrange error when the extended Kalman filter is used
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z 10,000
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Cl)0a-

,/EMITTER's PATH)
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\l 10K 10K I

S\
SITE 2

Fig. 12-Positional error in the x and y coordinates for a crossing emitter with
V = 250 units/s when the extended Kalman filter is used

12

x



NRL REPORT 8421

, 20,000
0
LU

-10,000

-x POSITION-

-20,000 _

Fig. 13-Positional error in the x and y coordinates for a crossing emitter with
V = 1000 units/s when the extended Kalman filter is used

SUMMARY

Three algorithms have been developed which use bearing measurements from two
remote sites to track moving emitters. Preliminary results indicate that the modified
Kalman filter technique is superior to the other two techniques in its ability to rapidly
develop a reasonable track. The extended Kalman filter demonstrated superior tracking
performance once it had settled down; however, for the cases considered this required an
unreasonable amount of time. Further investigation is required to assess the performance
of the algorithms against maneuvering targets. The effect of varying the time between
measurements should also be considered.
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Appendix

DERIVATIONS OF EQUATIONS (24) AND (33)

DERIVATION OF EQ. (24)

From Eq. (21)

x(k) = c sing1, + x,

= d cos 132 sin 11 /[sin (11 - 12)]

The differential form of x(k) is

Ax = d [-sin 02 sin 013/sin (01 - 12) + coS 132 sin 131 cos (01 - 12)/sin2 (131 - 12)] A32

+d [cos 1 1 cos 12 /sin (11 -12) - cos 1 2 sin 01 cos (131 - 02)/sin2 (131 -12)] A1 .

Using trigonometric substitutions and combining terms yields

Ax = d [sin 01 cos 1 /sin2 (11 - 12)] A132 - d [sin 1 2 cos '2 /sin2 (013- 12)] A1O .

Since E(Ax) = E(A131) = E(A3 2) = 0

and qx2 = E(Ax 2 ), ag, = E(A1g), and 013 = E(49 2 ),

the result is

ax2 = [d/sin 2 (11 - 12)] in2 11 (cos2 131 0)+ sin2 12 (cos2 132) g2']

Equations (25) and (26) are derived similarly.

DERIVATION OF EQ. (33)

The measurement Zm can be expressed as

Zm = Z + AZ,

where

AZ= (az/axi)Axj + (aZ/a8Y)AYi + (aZ/a)A

= (cos 1)(Axi - yiA13) - (sin g)(xitA + Ayi)-

14
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The assumption that AZ N gives

2= (xi2j + a2sin 2 , + ( 2 + yo:2) cos2 :

-2 sin 1(cos13)xiyia2.
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